
1 INTRODUCTION 
 

The diversity of structures that are sensitive to the ef-
fects of wind coupled with the increasing need to im-
prove the performance of constructed facilities has 
placed a growing importance on the problem of wind 
effects on structures. Most structures are designed 
based on the recommended loads given in codes and 
standards. Therefore, in order to enhance the per-
formance of structures under extreme wind condi-
tions, it is important to visit the wind load recom-
mendations in codes and standards. Generally, the 
wind codes and standards recommend an equivalent 
static wind loading for design. With the equivalent 
wind loading, the design engineers can obtain an ac-
curate estimate of wind-induced effects through a 
simple static analysis. The equivalent static wind 
loading ensures the consistency of the results ob-
tained from the static analysis with the actual wind-
induced responses, which involve complicated wind-
structure-interactions requiring wind tunnel tests or 
other alternative means familiar only to specialists.  

Traditionally, the wind loading on structures has 
been estimated by using the GLF approach (Daven-
port 1967). According to the GLF method, the 
equivalent wind loading is equal to the mean wind 
force multiplying by a GLF. The GLF accounts for the 

dynamics of wind fluctuations and the load amplifica-
tion introduced by the building dynamics. In this re-
gard, the overall concept of GLF has provided design 
engineers a convenient vehicle to implement recent 
research findings in design and practice. Owing to its 
simplicity, the GLF method has received widespread 
acceptance around the world and is employed in 
wind loading codes and standards of almost all the 
major countries. The codes and standards include 
provisions for the design of low-rise to high-rise 
buildings, bridges, towers and other structures under 
the buffeting action of wind.  Some of the major 
codes and standards are the NBC-1995 (NRCC 
1996), AS1170.2-89 (1989), ASCE7-95 (1995), 
RLB-AIJ-1993 (1996), Eurocode (ENV 1994). 

Notwithstanding its advantages, the GLF method 
has some shortcomings in the following two situa-
tions. The first is in the use of this method for struc-
tures that are relatively long, tall and flexible. Al-
though the gust factor is originally defined for any 
load effect, in reality, it is based on the displacement 
response, i.e. the gust factor is essentially the ratio 
between the peak and the mean displacement re-
sponse and the factor is indiscriminately used for any 
other response. This tacitly implies that the gust fac-
tor for any structural response is the same as the dis-
placement response factor. Because only the dynamic 
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and mean displacement responses in the first mode 
are included in the derivation, the gust factor is con-
stant for a given structure. When the constant gust fac-
tor is used to the peak equivalent wind load, an 
equivalent wind load whose distribution is the same 
as that of the mean wind load is obtained. Obviously, 
this is in disagreement with the common understand-
ing of the equivalent wind load on tall, long and 
flexible structures. For this kind of structures, the 
resonant response is dominant and the distribution of 
the equivalent wind load is, therefore, a function of 
the mass distribution and the mode shape. In this light, 
it is quite reasonable to examine the equivalent wind 
load by the traditional GLF method to ensure that the 
maximum load effects established are truly represen-
tative of the actual values. Secondly, as others have 
noted that the GLF method is not valid if either the 
mean wind force or the mean response is zero. An 
example of this kind is a suspended bridge or a canti-
lever bridge with asymmetrical first mode shape. 
Therefore, the mean displacement response in the 
first mode is equal to zero whether or not the mean 
wind load is zero. 

Zhou et al. (1998b) examined the along-wind 
loading on tall buildings utilizing the GLF in the light 
of various wind-induced response components. They 
have reported that the GLF method provides an accu-
rate assessment of the structural displacement, but re-
sults in less accurate estimation of other response 
quantities, for example, the base shear force. This ob-
servation is based on the fact the GLF is formulated 
using the displacement response; therefore, it fails to 
provide accurate prediction of other response com-
ponents. 

In light of the above, this paper aims at develop-
ing a more realistic procedure for design. The pro-
posed procedure employs a base moment gust-
loading factor, referred to as MGLF in the remaining 
discussion. The MGLF is formulated for tall struc-
tures. The expected extreme base moment is com-
puted from the mean base moment multiplied by the 
MGLF. The extreme base moment is then distributed 
to other floors in a manner very similar to the one 
used in the current design practice for earthquake ac-
tion. Furthermore, simple relationship between the 
proposed MGLF and traditional displacement GLF 
(DGLF) is determined, which makes it possible to 
use the proposed approach while still utilizing the ex-
isting database. A numerical example is given to 
demonstrate the convenience and the accuracy of the 
proposed procedure in comparison with the tradi-
tional approach.  

2 TRADITIONAL DISPLACEMENT GUST 
FACTOR METHOD 

The DGLF is defined based on the displacement re-
sponse (Davenport 1967) 

)(/)(ˆ zYzYGY =              (1) 

where YG  = the displacement GLF or DGLF; )(ˆ zY = 
peak displacement response, when assuming a sta-
tionary Gaussian process 

YYgzYzY σ+= )()(ˆ             (2) 

in which Yg = displacement peak factor; Yσ = RMS 

displacement; )(zY = mean displacement response.  
Accordingly, the DGLF is  

)(/)(1 zYzgG YYY σ+=            (3) 

which is dependent on Yg YY ,,σ . These quantities 
are separately derived in the following.  

By invoking the quasi-steady and strip theories, 
the wind force is given by 

2)),()((2/1),( tzuzUWCtzP D += ρ       (4) 
where W = the width of the building normal to the 
oncoming wind; DC = drag coefficient. By neglecting 
the contribution of the quadratic term (this effect has 
been considered elsewhere, e.g., Kareem et al. 1998, 
Zhou et al. 1999), one can obtain the mean wind load 
and the fluctuating wind load on the structure, respec-
tively, as 

ααρ 222
)/()/(2/1)( HzPHzUWCzP HHD ==   (5) 

αρ )/)(,(),( HztzuUWCtzp HD=        (6) 
in which α = the exponent of mean wind velocity 
profile. 

The mean structural displacement can be well ap-
proximated by the first mode mean displacement re-
sponse 
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2* )()( ϕ = generalized mass in the first 

mode; βϕ )/()( Hzz = = the mode shape; 1f = natural 
frequency of the first mode; H = the height of the 
structure. 

Using fundamentals of random vibration analysis, 
one can derive the expected values of the extreme 
displacement. Since Eq. 6 shows a linear relationship 
between the fluctuating wind velocity and the result-
ing wind load. Therefore, the wind loading process is 
also treated as Gaussian. Considering the fundamental 
mode of vibration of a structure, the governing equa-
tion of motion is 
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generalized fluctuating wind load; ζ = the critical 
damping ratio. Under random loading, the response 
power spectral density is given by 
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where )( fSξ  and )(* fS
p

 = the PSD of the general-

ized displacement response and the generalized fluc-

tuating wind load, respectively; and 
2

)( fH  = the 

transfer function of the structure 
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The RMS displacement at any height is given by 
)()( zzY ϕσσ ξ ⋅=               (11) 

or in a non-dimensional form 
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All traditional formulations of GLF are based on 
the above expressions, each entailing different sim-
plification. Formulations for large structures involve 
transformation of the wind fluctuating to pressure 
fluctuations in which the lack of correlation of turbu-
lent wind over the projected area of the structure is 
included. Also, the correlation between the wind-
ward and leeward faces is included in some codes 
and ignored in others (Davenport 1967; Kareem 
1986; Simiu & Scanlan 1996). The variation of turbu-
lence intensity is either based on a wind spectrum that 
is independent of or dependent on height (Davenport 
1967; Kareem 1985; Simiu & Scanlan 1996). These 
details lead to differences in the prediction of gust 
factors derived from different GLF formulations. 
Typically, Eq. 3 is recast in the following form  

ζ/2121 SEBgIRBgIG YhYhY ++=++=
 (13) 

where B , R  = resonant and background response 
components, respectively; S = size reduction factor; 
E = gust energy factor; hI = turbulence intensity at the 

reference height h . 
However, there has been some inconsistency re-

garding the evaluation of the peak response or the 
displacement peak factor. Utilizing the statistics ( 
Cartwright et al. 1956; Davenport 1964) one can get 
accurate estimation of the peak factor that usually in-
volves computation of the higher-order moments. But 
this operation is not convenient enough to be included 
in a design guideline. One convenient format is 

RgBgIG RBhY
2221 ++=          

 (14) 
in which RB gg ,  = background and resonant peak fac-

tor, respectively. Usually, Bg  can be set equal to ug , 

wind velocity peak factor; and 
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where T  = observation time. 
The form of DGLF in Eq. 14 is being included in 

the revised ASCE7. SEB ,,  have been given in 
closed form or presented in a graphical form in cur-
rent codes and standards (Solari & Kareem 1998). 
Rewriting Eq. 19 as  

221 YRYBY GGG ++=             (16) 

BgIG uhYB 2=              

 (17) 

RgIG RhYR 2=              

 (18) 
where YRYB GG , = background and resonant compo-
nents of DGLF, respectively.  

Based on the assumption of a linear-elastic struc-
ture, the traditional DGLF method defines the equiva-
lent wind loading in the following way 

)()(ˆ zPGzP Y=               (19) 

where )(ˆ zP = the expected extreme equivalent wind 
loading. Correspondingly, the background and reso-
nant equivalent static wind loading components de-
fined in the DGLF method are given by 
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 (21) 
Except for the mean wind force, the peak wind 

loading components given by Eqs. 20 & 21 depart 
from the actual values. Therefore, the associated 
wind-induced response estimates may deviate from 
the accurate values. Detailed discussion on this topic 
can be found in Zhou et al. (1998a, b). The next sec-
tion will provide a brief review of the resonant com-
ponent.  

3 CRITICAL REVIEW OF TRADITIONAL GLF 
METHOD 

The resonant equivalent wind loading can be rep-
resented by the inertial force.  When assuming a uni-
form mass distribution, 0)( mzm = , the actual peak 

resonant equivalent wind loading is  
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Note the difference between the distributions of 

the resonant equivalent wind loading given by the 
DGLF method (Eq. 21), and of the actual value given 
in Eq. 22. Clearly, the DGLF approach will result in 
an unrealistic prediction of the distribution of the 
resonant load effects. Assuming that the influence 
function of a response can be expressed as  

i z i z Hc( ) ( / )= β0              
 (23) 

where ic ,β 0  are constants. For the base shear force 

and the base moment, the preceding coefficients are 
ic = =1 00,β  and i Hc = =,β 0 1 , respectively. Ac-
cordingly, the structural response based on this influ-
ence function is given by  
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while the actual value is  
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Now, the ratio between the response given by the 

DGLF method and the actual value is 
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 (26) 
The sensitivity of the above factor to other major 

parameters is illustrated in Fig. 1. In Fig. 1(a), β  is 
set equal to unity, which implies a linear structural 
mode shape. The variation in the factor in Eq. 26 is 
shown for different value of β 0  (Eq. 23) and α , the 
wind velocity exponent. The upper and lower values 
of the factor, α2−RC , are 1.23 and 0.92, respectively, 

suggesting that indeed the prediction based on DGLF 
do depart from actual values. This is particular true 
for the base shear force case ( 00 =β ) when 1.0=α . 

Buildings on the oceanfront lots could be influenced 
significantly by this discrepancy in the predicted base 
shear. In Fig. 1b, α  is set equal to 0.15 and both β  

and β 0  are varied. It is noted that α2−RC  is more sen-

sitive to the mode shape exponent than it is to α . For 
β  varying between 0.5~2.0, this factor varies be-
tween 0.93~1.52. 

4 LLUSTRATIVE EXAMPLE I 
 

An example tall building is used for illustration, H × 
W × D = 200 × 50 × 40m; m0 = 234,275 kg/m; 1f =  
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Figure 1.  Resonant response deviation factor  

 
0.2 Hz; and ζ = 0.01. The wind conditions are: α  = 

0.15; smU /3010 = ; σ u U/ .10 02= ; and the spectrum 

given by Davenport (1967). 
The equivalent wind loading and its load effects 

are illustrated in Fig. 2. It is noted that the shear force 
distribution predicted by the DGLF clearly deviates 
from the actual distribution. As on can expect, the 
displacement response is predicted accurately. 

For this example case, the gust effect factors con-
cerning the base shear force, base moment, as well as 
the first mode displacement responses are listed in 
the Table 1. The actual gust effect factor is different 
depending on the response component concerned. 
However, the gust effect factor obtained from the 
DGLF method for all responses is the same. For the 
base shear force in this example, the gust effect factor 
by the DGLF method is 12% more than the actual 
value. 

Similarly, an examination of the background re-
sponse component can be performed as given in Zhou 
et al. (1998b), but it is not discussed here for brevity. 

Table 1. Gust effect factors 
 Base shear  Base moment displacement 
Actual 2.29 2.51 2.57 
DGLF  2.57 2.57 2.57 
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Figure 2. Resonant equivalent wind loads, shear and 
displacement response  
A: The mean wind force; B: The resonant equivalent 
wind load; C: The resonant equivalent wind load ob-
tained by the DGLF method  

5 BASE MOMENT GUST LOADING FACTOR 
 

For the base moment, considering a stationary Gaus-
sian process, we have (Zhou et al. 1999) 

MG /M̂M =                (27) 

MMM σgM +=ˆ               (28) 

MgG /1 MMM σ+=             (29) 
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Where MG  = the gust loading factor for base moment; 

M = mean base moment; M̂ = expected extreme base 
moment; and Mσ = RMS base moment.  

To evaluate the RMS value of the equivalent base  

moment, let us return to Eq. 8. With the PSD of the 
displacement response, Eq. 9, the PSD of the general-
ized equivalent, or alternatively response, wind load-
ing can be computed as  

22* )()()()( ** fHfSfSkfS
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in which the generalized equivalent wind loading is 
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Note that we use the same form but in boldface to dif-
ferentiate the response loads from the applied. 

The distribution of the response loading along the 
height, (z,t)p , is not the same as that of the mean wind 
load. Zhou et al. (1998b) have addressed this subject. 
Anyway, when assuming a linear mode shape, as gen-
erally used in most of the current literature, the fol-
lowing relationships are valid for both the applied 
wind load and the response wind loading 

HMp /* =                (33) 

/HMp =*                 (34) 
where M,M  = respectively, the base moment of ex-
ternally applied wind force and the equivalent base 
moment. Substituting these into Eq. 31, one can get 

2
)()()( fHfSfS M=M           (35) 

This very helpful relationship has been well docu-
mented by Boggs & Peterka (1989) and others and is 
actually the theoretical basis for the high frequency 
base balance technique. Obviously, it is exact when 
the structure is very rigid or for the background re-
sponse, in which case the mechanical admittance is 
equal to unity, the two items are the same. The above 
relationship is also exact for structures with a linear 
mode shape. However, these conclusions can not be 
simply extended to actual buildings with non-linear 
mode shapes. The effects of non-linear mode shapes 
have been discussed by Boggs & Peterka (1989) and 
Zhou et al. (1998c, d; 1999), respectively. Although 
the effect of the non-linear mode shapes cannot be 
simply neglected, fortunately, in the case of base mo-
ment, it has an insignificant effect. 

Similarly, the RMS equivalent base moment is 
given by 
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and the MGLF can be written as (Zhou et al. 1999) 

RBRBMM
222121 Ruhh ggIgIG ++=++=  (37) 

A very simple relationship between the MGLF and 
the DGLF can be pursued by introducing the follow-
ing relationships when considering a structure with a 
linear mode shape, which is usually the subject ad-
dressed in most of the literature 
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The preceding equation suggests that the MGLF is ex-
actly the same as the DGLF used in the current codes 
and standards. 

6 PROCEDURE FOR EQUIVALENT WIND 
LOADING 
 
Based on the preceding discussions, the following 

procedure is suggested for design applications: 
(1). Mean wind force 

( ) ( )iDiHi HBCHZUP ∆= αρ 22
2
1 )/(       

 (39) 
where iZ = the elevation of the ith floor above the 

ground; 1−−=∆ iii ZZH .  

(2). Mean base moment 
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               (40) 

where N = the number of floors of the structure.  
 (3). From current codes and standards, one can 

obtain the ESB ,, , and compute the GLF 

BIgGG huYBB 2==M            (41) 

ζ/2 SEIgGG hRYRR ==M          (42) 
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(4). Compute the resonant peak base moment 
MG RR MM =ˆ                (44) 

(5). Compute the peak equivalent wind loading. 
For the resonant component 

R
iii

ii
Ri Zm

m
MP ˆˆ

∑
=

ϕ
ϕ

            (45) 

Background component 

iBBi PGP M=ˆ                

 (46) 
Equation 45 provides the actual resonant equiva-

lent static wind loading for situations considered in 
codes and standards, and slightly conservative results 
for the situations departing from those in the codes; 
while Eq. 46 provides a good approximation of the 
background equivalent wind loading, resulting in er-
ror of response generally less than 5% (Zhou et al. 
1998b). 

(6). Compute the background and resonant re-
sponses using simple static analysis by applying the 
above equivalent wind loading. These response com-
ponents are then combined to obtain the resultant re-
sponse using an SRSS combination rule, and super-
imposed on the mean wind-induced response to 
obtain the expected extreme response (Zhou et al. 
1999). 

It is important to note that the MGLF has several 
advantages over DGLF, for example, (i) It provides 

the equivalent wind loading in a realistic manner. 
This is the most important feature of the proposed 
procedure; (ii) It uses the existing database, which 
permits a smooth transition from DGLF to MDGLF; 
(iii) It is formulated in a form that is familiar to most 
design engineers; (iv) The application range has been 
extended to accommodate the non-linear mode shape 
and non-uniform mass distribution; (v) It provides the 
opportunity for a generalized formulation and a con-
sistent transition of response predictions for struc-
tures from relatively rigid to flexible; (vi) It makes 
possible to use unified expressions for both theoreti-
cal analysis and experimental procedures Zhou et al. 
(1999). 

7 NUMERICAL EXAMPLE II 
 

An illustrative example is used to highlight the pres-
entation in the last section. The example building is 
similar to example I, except 1f  = 0.22 Hz, 

))/(1()( 0 Hzmzm λ−= , m0 =  5.5 ×  105 kg/m, 
βϕ )/()(1 Hzz = . Four cases are considered: (1) 

0.1=β , 0.0=λ ; (2) 6.1=β , 0.0=λ ; (3) 
0.1=β , 2.0=λ ;  (4) 6.1=β , 2.0=λ . The wind 

condition remains the same as in example I. 
The wind-loading components are plotted in Fig. 3. 

Since the traditional DGLF method does not differen-
tiate among these cases, it gives the same value in 
each case. The mean and background wind loading 
components by the MGLF method are the same as 
those given by the DGLF method, but the resonant 
component is different.  Even for case 1, the wind 
loading given by the MGLF method, a linear distribu-
tion, is clearly different from that given by the tradi-
tional method, which follows a α2  exponent law.  

Due to different distributions of wind loading, dif-
ferent responses are expected. Comparison of GLFs 
for different responses by the two procedures are 
listed in Table 2. The items in brackets are the ratio 
between the MGLF and the corresponding DGLF. 

Adopting a simple relationship between the ex-
treme equivalent wind loading and the mean wind 
force, the DGLF method gets a uniform GLF for all 
non-zero responses and for all four cases. 

For case 1, the MGLF is, as expected, equal to 
DGLF. A non-linear mode shape (case 2), or non-
uniform mass (case 3) or both (case 4) does influence 
the MGLF. But the effect of non-uniform mass is very 
small and the effect of non-linear mode shape on the 
resonant MGLF is 2.2% and the resultant MGLF 
0.8%, which is almost negligible. For case 4, a small 
error resulted in comparison with case 2.  



Nevertheless, since the MGLF procedure deter-
mines the equivalent wind loading in a more realistic 
manner than the DGLF method, obviously, the wind 
loads obtained by the DGLF method may differ from 
those by MGLF approach. Accordingly, the resulting 
response estimates will be impacted. Taking the base 
shear force as an example, the resonant base shear 
force by the MGLF procedure is 15% less than that 
obtained by the DGLF method for case 1, whereas, 
the overall extreme base shear is 5.4% less than the 
value obtained from DGLF analysis. For case 2, these 
respective errors increase to 23.2% and 8.3%. Al-
though for the base shear force, the effect is on the 
safe side, this conclusion cannot simply be applied to 
other responses. Due to different distributions of 
wind loading, the deviation of responses by the 
DGLF method will depend on the response and the 
structure being concerned. For example, the resonant 
equivalent wind loading on the top floor by the DGLF 
method is 33% (350 / 520 kN) less than the actual 
value, or the value given by the MGLF procedure for 
case 2. 

8 CONCLUDING REMARKS 
 

The equivalent static wind loading on structures util-
izing the traditional “gust loading factor” method usu-
ally differs from the actual loads, and consequently 
leads to unfavorable estimates of the associated 
wind-induced response. In this paper, a new proce-
dure for determining the equivalent wind loading, 
which employs a base moment gust-loading factor, is 
proposed. The expected extreme base moment is ob-
tained by multiplying the mean base moment by the 
proposed base moment gust-loading factor. The ex-
pected extreme base moment is used to establish 
loads at each floors in a manner similar to the one 
used in the current design practice for earthquake ac-
tion. Under the conditions generally implied in the 
current codes and standards, the proposed MGLF is 
numerically the same as the traditional DGLF.  
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Figure 3. Wind loading by DGLF and MGLF meth-
ods, A: mean wind force; B: background wind load-
ing relating to base moment response (Zhou et al. 
1998b); C: background wind loading by DGLF; D: 
resonant wind loading by DGLF; Resonant wind 
loading by MGLF: E: case 1; F: case 2; G: for case 3; 
H: case 4 
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Table 2. Comparison of the gust loading factors 
DGLF Method MGLF Method 

Displacement, base moment and 
shear and all non-zero responses

 
Base moment 

 
Base shear force 

 
 
Case 

BG  RG  G  
BG  RG  G  

BG  RG  G  

1 0.652 0.974 2.172 0.652
(1.000)

0.976
(1.002)

2.174
(1.000)

0.652
(1.000)

0.829
(0.851)

2.055 
(0.946) 

2 0.652 0.974 2.172 0.652
(1.000)

0.953
(0.978)

2.155
(0.992)

0.652
(1.000)

0.748
(0.768)

1.992 
(0.917) 

3 0.652 0.974 2.172 0.652
(1.000)

0.976
(1.002)

2.174
(1.000)

0.652
(1.000)

0.845
(0.868)

2.067 
(0.952) 

4 0.652 0.974 2.172 0.652
(1.000)

0.959
(0.985)

2.160
(0.994)

0.652
(1.000)

0.763
(0.783)

2.004 
(0.923) 

 


